Applications of Stein’s method for concentration inequalities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Stein’s Method for Concentration Inequalities

Stein’s method for concentration inequalities was introduced to prove concentration of measure in problems involving complex dependencies such as random permutations and Gibbs measures. In this paper, we provide some extensions of the theory and three applications: (1) We obtain a concentration inequality for the magnetization in the Curie-Weiss model at critical temperature (where it obeys a n...

متن کامل

Stein’s Method for Concentration Inequalities

We introduce a version of Stein’s method for proving concentration and moment inequalities in problems with dependence. Simple illustrative examples from combinatorics, physics, and mathematical statistics are provided.

متن کامل

Some applications of concentration inequalities to statistics

L’accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/∼annales/), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de c...

متن کامل

Concentration inequalities via Malliavin calculus with applications

We use the Malliavin calculus to prove a new abstract concentration inequality result for zero mean, Malliavin differentiable random variables which admit densities. We demonstrate the applicability of the result by deriving two new concrete concentration inequalities, one relating to an integral functional of a fractional Brownian motion process, and the other relating to the centered maximum ...

متن کامل

Concentration inequalities using the entropy method

We investigate a new methodology, worked out by Ledoux and Mas-sart, to prove concentration-of-measure inequalities. The method is based on certain modified logarithmic Sobolev inequalities. We provide some very simple and general ready-to-use inequalities. One of these inequalities may be considered as an exponential version of the Efron-Stein inequality. The main purpose of this paper is to p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2010

ISSN: 0091-1798

DOI: 10.1214/10-aop542